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FOREWORD

This report presents the design and analysis of the RL10-IIB breadboard low thrust engine
which was initiated by Contract NAS3-22902 and is submitted in comptiance with the
requirements of Contract NAS3-24238.

This prcject was initiated in October 1982 and the final report was delivered in December
1984. The effort was headed by Joseph S. Handerson, Project Engineer.

The following individuals have provided significant contributions in the preparation of this
report.

James R. Brown
Robert R. Foust
Donald E. Galler
Paul G. Kanic
Thomas D. Km'ec
Charles D. Limerick
Richard J. Peckham
Thomas Swartwout
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SUMMARY

The breadboard low thrust RL10-IIB engine is shown in Figures 1 through 4. The steady-
state cycle analysis data and schematics shown in Figures 5 and 6. The breadboard engine
utilizes a three stage oxygen heat exchanger (OHE) and four open-loop, hydraulically-actuated
breadboard control valves, which were adapted from earlier throttling engine programs. The
steady state and transient RL10-IIE engine cycle analyses shown in Section III were based on
anticipated flight propellant inlet pressures of 20 psia for both fuel and oxidizer in order to
provide data for the “flighi representative” valves and OHE designs. The first engine test series
using the breadboard design will be performed at fuel and oxidizer inlet pressures of 25 psia and
33 psia respectively, because the Pratt & Whitney (P&W) E-6 test stand cannot currently
provide the flight-representative inlet conditions. Sections IV and V provide the design/analyses
of the OHF and the breadboard valves, respectively.
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Figure 1. Breadboard Low-Thrust RL10-IIB Engine (View 1)
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Figure 2. Breadboard Low-Thrust RL10-1IB Engine (View 2)
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Figure 3. Breadboard Low-Thrust RL10-IIB Engine (View 3)
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SECTION |
INTRODUCTION

This report describes the breadboard low thrust RL10-IIB engine which is scheduled for

f testing in early 1984. A summary is also provided of the analysis and design effort which has been

.\ completed to define the multimode thrust concept applicable to the anticipated requirements for

: upper stage vehicles in the late 1980s. Baseline requirements wese established early in the

: current program for operation of the RL10-1IB engine at the following conditions: 1) Tank Head

Idle (THI) at low propellant tank pressures, without vehicle propellant conditioning or settling

! thrust, 2) Pumped Idle (PI) at a 10% thrust level for low “G” deployment and/or vehicle tank

pressurization, and 3) full thrust (FT) (15,000 Ib). Several variations of the engine configuration
were investigated and results of the analyses are also included in this report.
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SECTION 1l
DEFINITION AND REQUIREMENTS

The RL10-IIB engine (Figure 7) is derived from the basic RL10A-3-3 but has increased
performance and operating flexibility for use in the Orbit Transfer Vehicle (OTV). With a
nominal full thrust level of 15,000 Ib (in vacuum) at a mixture ratio of 6.0:1, and multi-mode

operational capability as shown in Figure 8, the IIB engine is defined as an RL10A-3-3 with the
following changes:

1. Two-position extendible nozzle with recontoured primary section to give a

large increase in specific impulse with an engine installed length of 55
inches.

2. Injector reoptimized for operation at a full thrust level mixture ratio of 6.0:1.

3. Tank head idle (THI) capabilities, where the engine is run without its
turbopump rotating but pressure-fed on propellants supplied from the
vehicle tanks at saturation pressure. Propellant conditions at the engine
inlets can vary from superheated vapor, through mixed phase, to liquid, The
objectives are to supply low thrust to settle vehicle propellants and also to
obtain useful impulse from the propellants used to condition the engine and
vehicle feed system.

4. Operation at low thrust in pumped mode (maneuver thrust) to provide low
AV and autogenous tank pressurization capability.

5. Capability for both H, and O, autogenous tank pressurization.

Thrust : 15,000 Ib

Chamber Pressure : 400 psia

Area Ratio: . 205

lsp : 459.8 sec at 6.0 MR
Operation : Full Thrust

(Saturated Propeliants)
Maneuver Thrust
(Saturated Propeliants)
Conditioning : Tank Head Idie

PRECEDING PAGE BLANK NOT FIEMED
=D 260478

Figure 7. RLI10-IIB Engine Configuration
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Thrust = 100%

Propellant

Setting
and Engine

| Thrust ~ 0.8% to 3.5%
Thrust Tank

Pre-Pressurization
Thrust =~ 10%

o y e "}5
Tank Head Rated Thrust ‘—|
Idie (THI) Pumped
Idle (P1)
Time =

FD 280485

Figure 8. RL10-1IB Engine Multimode Operation Capability
A. DESCRIPTION

Figure 9 shows an engine flow schematic for the current RL10A-3-3A engine, and Figure 10
for the IIB engine. The fuel pump interstage cooldown valve is deleted, since the engine is
conditioned by running in THI mode. A GO, heat exchanger, GO, control valve, turbine bypass
valve and cavitating venturi valve are added to enable the engine to run in THI and PI. Fuel and
oxidizer tank pressurization valves are added to give autogenous tank pressurization capability.
Additional solenoid valves and modifications to the oxidizer control valve and thrust control
valve give the engine its capability to operate in three modes. A dual exciter gives improved
ignition reliability in THI. The primary nozzle is recontoured and a jackscrew-operated, two-
position, dump-cooled extendible nozzle is added. The primary nozzle exit diameter is fixed at 40
in., since this is the limiting diameter for the extendible nozzle to be retract-! over the engine’s
power head, and is also the largest size which allows insta'lation with a truncated extendible

nozzle in P&W/GPD E-6 test stand. The injector is reoptimized to give improved performance at
a mixture ratio of 6.0.

B. OPERATION
1. Tank Head Idle (THI)

The engine is started in THI mode, with propellants supplied in vapor, mixed, or liquid
phases.
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Figure 9. RL10-3-3A Engine Flow Schematic — Current Design Provi 'es Single Thrust
Level
Oxidizer
Control Gaseous
Oxidizer
Main Fuel
Shutoff
0,
Thrust 0, Heat
Control Exchanger
Valve
Ha Valve
Cavitating
Venturi
H, Pressure ’
Relief Valve
FD 280487

Figure 10. RLIO-IIB Engine — GOX Heat Exchanger and Throughflow Control Valves are
Primary Changes

With the inlet shutoff valves open, fuel flows through the pump, the thrust chamber cooling
jacket, around the turbine, through the GO, heat exchanger, and into the main injector.

Similarly, the oxidizer flows through the pump, and with the oxidizer control valve shut, all the
flow goes through the heat exchanger to the injector.
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2. Pumped Idle (Pl)

After pump conditioning has been completed in THI mode, the engine is ready to be
operated its pumped idle thrust level for low AV maneuvers or as a step on its acceleration to full
thrust. To start the turbopumps, the main fuel shutoff valve is opened, and the turkbine bypass
valve is closed momentarily to give a high initial turbine torque and is then reopened to the
maneuver-thrust position. The cavitating venturi is decreased in area to isolate the fuel pump
from jacket boiling instabilities.

3. Full Thrust (FT)
The engine is accelerated o full thrust by closing the turbine bypass valve, opening the

liquid oxidizer valve, closing the gaseous oxygen valve, and opening the cavitating venturi valve.
At about 90% of full thrust, the thrust control valve opens to reduce thrust overshoot.
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SECTION il
ENGINE CYCLE ANALYSIS

The RL10-IIB rocket engine multi-mode operation analysis and design addressed in this
report was preceded by extensive analysis and testing, at low thrust levels, of earlier RL10 engine
models. Testing on the RL10A-3-2, RL10A-4, and RL10A-3-7 throttling engine models between
1963 and 1967 resulted in over 800 engine firings and 70,000 seconds of runtime at tank head idle
(THI) and pumped idle (PI) modes of operation. These RL10 engine models required active
controls to obtain moderately stable low thrust operation. The 55 inch long, RL10 Derivative IIB
engine concept, defined in the early 1970s, was required to be caps® ie of stable operation at THI,
25% PI and full thrust (FT) using an oxidiz:r heat exchanger (OHE) and simple, solenoid-
actuated engine valves instead of active controls. These analyses of RL10 Derivative II engines,
conducted during the 1970-1973 period, included Derivative IIB thrust chamber heat transfer
predictions, thermal skin OHE performance requirements, definition for stable PI operation at
10% thrust with fixed position valves. Both steady state and transient cycle simulations were
included in these Derivative Engine Study results as reported in P&W Report No. FR-6011,
dated 15 December 1973, under contract NAS8-28989. Later analyses were reported in the P&W
Space Tug Engine Report, P&W Report No. FR-7498, dated 21 May 1976 under contract NAS§-
31151, and an Orbital Transfer Vehicle (OTV) engine study P&W Report No. FR-14615, dated
15 March 1981, under contract NAS8-33657. All of the background data from these studies were
reviewed for applicability and documentation to prevent duplication of effort during this RL10-
IIB design and analysis program under NASA contract NAS3-22902.

The evolution of the RL10-IIB engine cycle during this design/analysis program, urder the
Product Improvement Program (PIP), is shown on Table 1. The engine was derived from the
RL10A-3-3 engine, and modifications were made as required to satisfy the particuiar goals and
operating conditions for the RL10-IIB engine. The initial configuration shown, which had been
carried forward to this program from earlier analyses, had a pumped idle thrust level of 25% of
FT. Table 1 also presents characteristics of the Preliminary Fngine Design, an Alternative
Design, the Baseline Design (which was used for Flight Representative controls and OHE
performance predictions), and the Breadboard Design intended to be used for the 1st Test Series.
These analyses were required primarily because of the 10% PI thrast-level selected for the RL10-
IIB engine and changes identified by the series of hardware design/analyses.

A. PRELIMINARY CONFIGURATION

Preliminary RL10-IIB engine steady state cycle analyses defined the operating characteris-
tics, engine configuration requirements, and control valve requirements at low thrus: using
estimated performance for an oxygen heat exchanger at the 10% thrust PI design point identified
at the start of this effort. The RL10 Derivative Engine steady-state cycie deck MJ£7277 described
in Appendix A was modified to provide the 10% thrust PI simulation with estimated heat
exchanger characteristics. Incorporation of a reduced effective flow area (0.9 in.?) turbine stator
configuration, tested exteusively during the 1960s, matched the turbine power to the required
10% PI flow rates. Engine operation was investigated using propellant inlet conditions
achievable on the E-6 test stand (Fuel Pump Inlet Pressure (FPIP) = 25 psis, Oxidizer Pump
Inlet Pressure (OPIP) = 33 psia) for the scheduled breadboard low thrust test series, as well as
with the lower propellant inlet conditions (FPIP = 20 psia, OPIP = 20 psia) that will be available
for subsequent low thrust test series. The later propellant inlet conditions are more representa-
tive of the expected flight vehicle propellant conditions and will be used for the “flight
representative’” (FR) component designs and the second engine test series.
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1‘ Table 1. Breadboard RL10-IIB Design/Analysis Iteration Summary
i 0, H, Chamber/ Turbine
g Injector Injector Nozzle OHE Nozzle H,/0,
B3 Item Area A.“J;’a Heat Heat Area Gear Inlet Applicable
No.  Configuration (in.?) (inf) Transfer Transfer (in%) Ratio Conditions Figures
] ? 1 RLI10 A-3-3 0.8 2.25 RL10A-3-3 NA 1.1 2.5 NA NA
; (70 irn.)
3 2 Initial PIP 08 225  RLI0A3-3  Estimated 11 25  Flight None
‘¥ RL10-1IB (26% PI) Representative
5'_
: 3  Preliminary 1.0 225 RL10A-3-3 Estimated 09 25 Flight 11 to 32
i RL10-11B (10% PI) Representative
- 4 Preliminary 1.0 2.25 RL10-1IB Estimated 09 25  Flight 33 to 37
- Update (55 inch) Representative
: RL10-IIB
td
-1 5  Alternate 3.0 1.7 RL10-1IB Estimated 0.9 21 Flight 38 to 44
- g Gas/Gas Representative
~ RL10-1IB
-
3 6 Baseline 0.8 2.25 RL10-IIB Estimated 09 21  Flight 45 to 47
RL10-1IB Representative
7 Baseline 0.8 2.25 RL10-IIB 3 Stage 0.9 2.1 Flight 48 to 64
RL10-IIB Update OHE Representative
Update
8 Final 0.8 2.25 RLIO-IIB 3 Stage OHE 0.9 21  Flight 65 to 68
Baseline Update Update Representative
‘“reversed flow
9  Breadboard 0.8 2.25 Final Final 0.9 21 Breadhoard 69 and 70
RL10-I1B Baseline Baseline

o NA — Not Applicable

Parametric analyses of requirements for the PI Gaseous Oxidizer Valve (GOV) area and
oxidizer injector temperatures as functions of venturi pressure loss and mixture ratio are shown
in Figure 11 for the breadboard test series inlet conditions. As indicated, marginally acceptable
valve differential pressures (AP’s) and oxidizer injector conditions could be obtained with the
0.8 in.2 RL10A-3-3 Bill-of-Material (BOM) oxidizer injector flow area and 2.5 gear ratio.
Howew;er, increased GOV AP would be available with the oxidizer injector flow area increased to
1.0in/

Using the flight-representative inlet conditions showed that PI operation with the 0.8 in.2
oxidizer injector area would require a gear ratio change to 2.1 to provide acceptable GOV AP
(Figure 12). The 2.1 ratio gears had previously been tested on the RL10A-4 engine. Increasir
the oxidizer injector flow area to 1.0 in.2 not only increased the control margin, it also provided
satisfactory oxiciver injector conditions and control valve AP with the 2.5 gear ratio at the flight
representative in:ci conditions as shown in Figure 13. Incorporating the 2.1 gears would increase
GOV AP margin 1arther as incicated. However, the 2.1 gear parts were long-lead items and none
were available, so continued analysis was concentrated on the 2.5 gears and 1.0 in.? injector
configuration. The 10% *‘hrust operating points at mixture ratios of 4.0, 5.0, and 6.0 were
compared on RL10 pump operating maps with test data points (development engine FX141-45)
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obtaired during low thrust testing ir: 1966 anc' ..»~ As shown in Figures 14 and 15, the test data
indic..te that there should be no probiem with t:1:: i 1mp stability.

Steady-state THI operation with the flig>® --:presentative fuel pump inlet conditions ¢ -
preliminary valve areas indicated that the -~ - 't2m would require undesirable throttling to
nro' ide a target mixture ratio of 4.0 with %' .., s xidizer pump inlet pressure. Witi. - alve areas
‘Apr,: 8ot to the planned wide open positic . ." 3V Agp = 2.0 in.2 and GOV Acp = 1.273 in.2),
mixiure xatio stabilized at 3.2 (Figure , <)

The RLI0 {iB engine configise i . 2. completion of the preliminary analysis is summa-
rized as item 3 in Table 1. Valve u:¢: « 1.4 flow schematics for engine conditions corresponding
to the three required opevating lsvs!s {THI, PI, and FT) are shown in Figures 16 through 8. A
comparison of configurations studiad during the preliminary analysis is presented in Tuble 2.

Transient analyses were concucted with the computer programs defined in Appendix B
using this preliminary engine configuration o0 provide data for the flight-representative control
valve aesigns. The transients from start to THI, from THI to PI, and from PI to FT were each
examined separately. The start-to-THI trarsients were evaluated with flight represent-tive inlet
pressures and a combination of both saturated hgid and saturated var<c propellants.
Preliminary THI transient engine characteristics with saturaicd linmid »z,pellants are shown in
Figures 19 through 22. As indicated, stzady-state THI operation is achieved in less than 45
seconds after start. Preliminary engine characteristics for transient operation from THI to PI
mode were also generated and critical engine parameters are shown in Figures 23 through 25.
Steady-state PI operation is achieved in less than 1 second after initiation of the transient,
as shown.

Preliminary RL10-1IB engine transient characteristics from PI (10% thrust) to FT were
also defined. Initial engine transient valve scheduling required that the simulated RL10 thrust
control valve (TCV) stay closed up to 300 psia chamber pressure. which is normal operation.
This required the turbine bypass valve to be ramped closed very siowly (~ 800 msec — an
unreasonable requirement) to increase duration of the transient and prevent pump overspeed.
Transient characteristics with a2 more reasonable TBV ramp time (~ 200 msec) produced an
acceleration with unacceptable: pump overspeed and thrust overshoot (denoted as squares on
Figures 26 through 29). Opening the TCV at a chamber pressure of 100 psia produced a more
acceptable transient (denoted as circles on the figures). The complete transient characteristics
were not defined during this preliminary analysis and the simulation was arbitrarily terminated
when chamber pressure reached 300 psia. The selected valve sequencing and flow rates for these
iransients are presented in Figures 30 thruugh 32.

B. PRELIMINARY UPDATE CONFIGURATION

An update of the preliminary RL10-IIB engine cycle analysis incorporated results of the
thermal analysis of the recontourec ind shortened RL10-IIB thrust chamber/primary nozzle
assembly. The new heat transfer characteristics were iacorporated into the cycle deck and new
design points at THI, PI, and FT were generated. Flow schematics are shcwn in Figures 33
through 35. Pumped idle (10% thrust) operation at a mixture ratio cf 6.0 required a reduction in
cavitating venturi pressure loss (Figure 36) to provide the desired conditions at the oxidizer
injector. Control capability on the oxidizer side was diminished because the GOV pressure loss
was decreased by 30%. Control capability would have been reduced further at lower mixture
ratios as it would have been necessary to further decrease the venturi pressure loss to maintain
geseous conditions at the oxidizer injector.
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Figure 11. RLiu-I1IB Engine Operation at Pumped Idle (Breadboard Test Series

Inlet Conditions)
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Figure 12. RL10-IIB Engine Operation at Pumped Idle (Flight-Representative
Inlet Conditions)
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Figure 13. RLI10-IIB Engine Operation at Pumped Idle (Flight Representative Inlet
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Figure 14. RL10A-3-3 Fuel Pump Operating Characteristics
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Table 2. RL10-IIB Engine Cycle Configurations Studied — Preliminary Analysis Summary

Configuration Number

1 2 3 4 5 6
Flight Flight Flight Flight

Inlet Conditions* Breadboard Breadboard  Representative Representative Representative Representative
Gear Ratio (H,/0,) 2.5 2.5 2.5 2.1 2.1 2.5
Oxidizer Injector 0.8 1.0 0.8 0.8 1.0 1.0
ACD'— in.2
Turbine Stators 09 0.9 0.9 0.9 0.9 0.9
ACD - in.z
Acceptable Gaseous
Ozxidizer Valve (GOV)
Characteristics Marginal Yes No Yes Yes Yes
*Breadboard ~ — Fuel Pump Inlet Pressure (FPIP) = 25 psia Net Positive Suction Pressure (NPSP) = 4.5 psi
Tests

— Oxidizer Pump Inlet Pressure (OPI?) = 33 psia Nev Positive Suction Pressure (NPSP) = 10 psi
Flight — FPIP = 20 psia NPSP = 2.0 psi
Representative
Tests

— OPIP = 20 psia NPSP = 2.0 psi
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TBV Ramp Time ~ 200 msec, TCV
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Figure 26. RL10-1IB Engine Transient — Pumped Idle Mode to Full Thrust (Chamber
Pressure versus Time)

| 1 | |
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Figure 27. RL10-1IB Engine Transient — Pumped Idle Mode to Full Tnrust (Fuel Pump
Speed versus Time)
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Figure 28. RLI10-IIB Engine Transient — Pumped Idle Mode to Full Thrust (Chamber
Mixture Ratio versus Time)
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Figure 29. RLI10-1IB Transient — Pumped Idle Mode to Full Thrust Level (Turbine Inlet
Temperature versus Time)
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Figure 36. RL10-IIB Engine Operation (10% Thrust Level)
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C. ALTERNATE GAS/GAS CONFIGURATION

At this point in the Analysis a change in the engine’s basic flowpath was investigated. The
engine, in its urelirinary configuration, utilizes the oxygen-hydrogen heat exchanger in the
turbine bypass fluwpath (Figure 37) to vaporize the liquid oxygen at low thrust levels (<10%),
thus providing adequate injector pressure loss to ensure stable combustion. During acceleration
to FT, closing the ©tOV causes the oxygen to be routed through the OCV to the injector where
sufficient inie:tor differential pressure (AP) is available for stable operation at FT. However, a
portion of the pre!iminary engine acceleration range (between 10% and 40% thrust) may have
insufficienc injectar (liquid oxygen) AP to prevent combustion instability with the GOV closed.
Therefore, sn alternative configuration was conceived to eliminate this possibility. The heat
exchanger was moved to the fuel leg downstream of the main shutoff valve (Figure 38) so that
boih propeilants flow through it 4t all times, thus ensuring sufficient oxidizer injector AP and
poteatially allowing stable engine operation throughout the range from 2% to 100% thrust.

This configuration change would eliminate the liquid oxidizer flow control valve. Ground
mixture ratio trim and propellant utilization capability would have to be added to ti.e gaseous
oxygen valve {(GOV). Then, to accommodate the full thrust (FT) gaseous oxygen flow, the
injector’s effective area would have to be increased. Initially, an area of 2.0 in.2was nvestigated,
but this area resulted in a marginal fuel pump stall margin. Therefore, to increase fi:el pump stall
margin, the area was further increased to 3.0 in.2 To maximize cor-bustor efficiency, the velocity
of the gaseous hydrogen into the chamber was also increased to match the velocity increase thst
resulted from gaseous oxygen injection at FT. This was achieved by decreas:ng the fuel injector
effective area by approximately 25% to 1.7 in.? To ensure adequate pressure loss on the oxidizer
side (for control purposes) and to move the fuel pump operation away from the stall line, the
H,/0, pump gear ratio was reduced from 2.5 to 2.1. Pump operating parameters at 10% thrust
level are presented in Figures 39 and 40. The effects of varying the mixture ratio and cavitating
venturi AP on the 10% thrust operation are shown in Figure 41. Engine cycle points for this
alternative (gas/gas) configuration are shown in Figures 42 through 44. Table 3 compares the
preliminary configuration with this alternative configuration.

D. BASELINE CONFIGURATION

A proposal to build the alternative configuration for testing was rejected because of the
significant changes to engine hardware and operations experience not related to low thrust
requirements, however the option to implement it later was left open. The same oxygen-hydrogen
heat exchanger design requirements apply to either of the low thrust engine configurations. The
2.1:1 gears, however, offer benefits to both the gas/liquid and gas/gas versions of the engine, so a
decision was made to incorporate the gears into the gas/liquid engine. These gears also allow the
oxidizer injector area to be reduced to 0.8 in.2 — the same area as in current RL10A-3-3A
production engines. Flow schematics for the resultant “baseline” engine configuration design
points at THI, P1, and FT are presented in Figures 45 through 47.

E. UPDATED BASELINE CONFIGURATION

Cycle analysis was continued with updated component operating characteristics as engine
design data became available for the current RL10A-3-3A production engine and the RL10-I1IB
engine. Incorporated into the steady-state cycle deck were: updated RL10A-3-3A turbopump
performance characteristics, revised predictions for the 55-inch RL1G-IIB thrust cham-
ber/primary nozzle characteristics, and heat transfer and flow characteristics for the RL10-1IB
engine 3-stage oxidizer heat exchanger (OHE), such as shown in Figure 48. The resultant cycle
data are shown in Figures 49, 50, and 51 for THI, 10% thrust, and FT operating levels,
respectively.
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Figure 39. RLI0A-3 3 Fuel Pump (2-Stages)
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Figure 40. RLI0A-3-3 Oxidizer Pump
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Figure 41. RLI10-IIB Alternative Configuration Cycle Deck Results
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Table 3. Comparison of the RL10-IIB Engine Preliminary Configuration With
the Alternative Configuration

Preliminary Alternative
Operating Range — % Full Thrust 2 to 10, 40 to 100 2% — 100%
Oxidizer Control Valve Yes No
Gear Ratio 2.5 21
Fuel Injector Area — in.? 2.25 1.7
Oxidizer Injector Area — in.2 1.0 3.0
GOX HEX Used — % Full 2to0 10 2 to 100
Thrust
Start Transient Rapid P_ Rise Smooth and Clean P,

at GOX-t0-LOX Point

Rise With Constant GOX
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Hydrogen Exit
Tout = 238°R
i Pos = 46.4 psia
Stage 1/ ~)
Oxygen Inlet
T, = 167.3°R - _
P, = 84.3 psia Stage 2
m= 284 Ib/sec V /
Hydrogen inlet
T = 639°R
/ P, = 47.1 psia
/ m= 0.182 Ibm/sec
Tm = 209°R
Pot = 77.2 psia

FD 278924

Figure 48. RL10-IIB Engine Oxidizer Heat Exchanger Performance Data — Pumped Idle
Mode
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A subroutine that approximates the thermal ine.tia of the OHE was then incorp.rated into
the engine transient compute: <..aulation. The model incorporates the =ffects on propeliant
temperatures of the heating or :0oling of the mass of metal in the OHE. The one-dimensicnal
model of heat flow to and from the metal is based on a multi-point analysis of the he.t exchanger
at steady-state conditions. Use of the mods] gives a more realistic representation or transient
parameters. Transients were investigated from THI to PI. Significant engine parameters (Pc,
O/F, rpm, and FTIT vs time) are shown in Figures 52 through 55. The transient from PI to FT
was also investizated to determine valve scheduling. The program was run with ramped input
thrust control characteristics because an accurate thrust control transient simulation was not
available. Figures 56 through 59 present the same engine parameters listed above versus time.
This acceptable transient was achieved by opening the cavitating venturi and m 1in fuel valve,
allowing the engine to accelerz‘e to an intermediate thrust level (Pc ~ 160 psia) then cloting the
turbine bypass valve. This allowed the gaseous oxygen downstream of the (liquid) OFC to be
removed from the system before the transition to ful' turbine powei, thus preventing the
excessive fuel pump overspeed seen on previous transient simulations. (c.f. Figure 27,
Preliminary RL10-IIB Configuration.)
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Figure 52. RLI10-IIB Engire — Tank Head Idle to Pumped Idle Transition (Chamber
Pressure versus Time)
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N Figure 53. RL10-IIB Engine — Tank Head Idle to Pumped Idle Transition (Chamber
Mixture Ratio versus Time)
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Figure 54. RL10-IIB Engine — Tank Head Idle to Pumped Idle Transition (Fuel Pump
Speed versus Time)
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Figure 55. RL10-1IB Engine — Tank Head Idle to Pumped Idle Transition (Turbine Inlet
Temperature versus Time)
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Figure 56. RLI10-1IB Engine — Pumped Idle to Full Thrust Transition (Chamber Pressure
versus Time)
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Figure 57. RL10-IIB Engine — Pumped Idle to Full Thrust Transition (Chamber Mixture
Ratio versus Time)

36,000

- A

D

Fuel Pump 20.000 /

Speed - rpm /

12,000 —7
4,000
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time From Pi-to-FT
Signal - Second

FD 278934

Figure 58. RLI10-IIB Engine — Pumped Idle to Full Thrust Transition (Fuel Pump Speed
versus Time)
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Figure 59. RLI10-IIB Engine — Pumped Idle to Full Thrust Transition (Turbine Inlet
Temperature versus Time)

An effort was made to write a thrust control simulation for use in the RL10-IIB engine
transier:t program. The RL10 thrust control valve (TCV) (Figure 60) limits thrust overshoot
during engine start and controls turbopump power to maintain chamber pressure at steady-state.
A spring-mass model and a two-volume dynamic model were combined to simulate the transient
response of the thrust control. The spring-mass model determines the shear orifice and bypass
valve displacements as functions of time and fluid system driving forces. The two-volume fluid
dynamics model calculates flows and pressures in the thrust control to determine those forces.

Various iterations of the thrust control si.aulation « -un with input engine acceleration
test data from P&W experimental engine FX143-33 (Run  ~. 436.01), which had been fitted
with high response instrumentation to measure TCV input parameters. This produced thrust
control simulation results that compared favo.ably to engine test data (Figures 61 and 62).
However, when this simulation was used with the RL10-IIB engine transient program, unstable
operation was indicated during engine acceleration to full thrust from pumped idle. Many
i* “rations of the basic thrust control simulation ar a a simplified version failed to provide either
engine operation consistent in all respects with raeasured data or stable engine operation after
acceleration. A modification to the engine simulation to incorporate a gas venturi between the
fuel bypass tee and turkine inlc. appeared te reduce the chamber pressure oscillation duration
but did not eliminate it entirely (Figures 63 and 64). Since rated thrust demonstration was not a
primary goal of the first test series, the TCV simulation effort was terminated.
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Figure 61. RLI10-IIB Engine Start Transient (Servo Chamber Pressure versus Time)
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Figure 62. RLIO-IIB Engine Start Transient (Differential Pressure Across Bypass Valve
versus Time)
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Figure 63. RL10-IIB Engine Start Transient — Pumped Idle Operating Mode to Full
Thrust Level (Chamber Pressure versus Time)
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Figure 64. RLI10-IIB Engine Start Transition — Pumped Idle Operating Mode to Full
Thrust Level (Thrust Control Valve Area versus Time)

. F. FINAL BASELINE AND BREADBOARD CONFIGURATIONS

After the designs of the flight representative controls and the design and heat transfer
analyses of the OHE were completed, the characteristics of the “reversed” flow OHE model
(Figure 65) were incorporated in the cycle deck. As explained in Section IV, and Appendix C, the
r~verse flow concept permitted reduction in 3rd-stage heat transfer without redesign of the heat
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exchanger. This became the final configuration. The results are shown in Figures 66 through 68.
The cycle deck was then run with propellent inlet conditions and corresponding valve settings
planned for the breadboard lew thrust engine test program. These resulis are shown in Figures 69
and 70.

Mixture Ratio (O/F) = 6.0
Stage 2 Insulation Conductivity = 0.033 Btu/ft-hr°R

Hydrogen Inlet

Tout = 639°R
Pou = 47.1 psia
Z
Oxygen Inlet Stage 1 ) Oxygen
T, = 167°R Ny T = 199°R
Ff,,, = 84.3 psia / P = 90.8 psia
m =284 Ibm/sec Quality = 0.12
— - Stage 2
Z
Hydrogen Exit
T = 280°R
Hydrogen P, = 46.2 psia
T == 547°R L/ = 0.182 Ibm/sec
P = 46.6 psia / Stage 3
Oxygen Exit
Tout = 198°R
Pot = 78.3 psia
Quality = 0.95

FD 278950

Figure 65. RL10-IIB Oxidizer Heat Exchanger — Pumped Idle Performance (Reversed
Hydrogen Flow)
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SECTION IV
HEAT EXCHANGER ANALYSIS £ND DEGIGN

The Oxidizer Heat Exchanger (OHE) heat transfer analyses that provided the basic OHE
design requirements and those for subsequent design iterations were based on limiting the heat
input to the liquid oxygen during both THI and PI operation until a 5% to 10% oxidizer quality
(percent vapor by weight) is achieved. Increased heat transfer rates could then be applied withcut
causing unstable boiling. These requirements had been established during the tests and studies
leading to the Space Tug Engine Report (P&W Report No. FR-7498, 21 May 1976), and the
Orbit Transfer Vehicle Advanced Expander Cycle Engine Point Design Study (P&W Report No.
FR-14615, 15 March 1981). The maximum allowabie heat flux values for the liquid oxyzen at
THI and PI conditic... vere calculated accordingly.

The basic RL10-I1B OHE design fluid conditions are shown in Table 4. The same inlet
flowrates, temperatures and pressures were maintained for all OHE design analyses. The initial
heat transfer analysis defined a three-stage cross-flow heat exchanger. Figure 71 shows the initial
three-stage heat exchanger arrangement with the 10% Pumped Idle design point performance
parameters; the THI and FT off-design , erformance parameters are also given.

Table 4. RL10-IIB Engine Heat Exchanger Design
Fluid Conditions

10% Thrust
Heat Exchanger 10% Quality
Oxygen Inlet Point
Flowrate -— lbm/sec 2.84 2.84
Pressure — paie 844 —
Temperature — °R 167.3 —
Enthalpy — Btu/lbm 63.2 84.9
Hydrogen
Flowrate — lbm/sec 0.182 0.182
Pressure -- psia 47.1 —_
Temperature — °R 6.9.0 —
Enthalpy — Ptu/lbm 2161.6 1822.0

The initial OHE was designed to supply slightly-superheated oxygen at 209°R and 77.2 psia
at the exit. Stages 1 and 2 are of etched or milled-channel stainless steel (Thermal Skin®)
constru:tion with metal felt insulation between the plates. Stage 4 is of stainless steel Thermal
Skiz construction with no insulation between the plates. Detailed geometry and performance
information for the individual stages can be found '.: Figures 72 through 74.

Stage 1 was designed to assure stable boiling of the liquid oxygen at the conditions
experienced duri~g THI operation. The metal felt insulation density and thickness were selected
to keep the heat flux to the oxygen helow the muximum allowable heat flux for stable boiling
(0.95 Btu/ft* sec) at THI. The calculated conductivity of the compressed metal felt insulation
used in the analysis was 0.041 Btu-ft/ft?-hr-°F.
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Oxygen

T = 199°R

P = 82.1 psia
Hydrogen Inlet

— T, = 639°R
P, = 47.1 psia

FR-18046-3
Hydrogen Exit
Tout = 238°R
/ Pyt = 46.4 psia
Oxygen Inlet Stage 1 7
T, = 167.3°R -
P,, = 84.3 psia
m= 2.84 Ib/sec
Stage 2
Hydrogen
T = 324°R

Oxygen

Hydrogen

P = 46.8 psia / Stage 3

Oxygen Exit
Tout = 209°R
Pou = 77.2 psia

m= 0.182 Ibm/sec

Heat Exchanger Performance at Off-Design Conditions

Tank Head Idle Mode

Full Thrust Level_

- T.-°R 166.0
Tou - °R 539.0
P, - psia 20.0
Pou - Psia 17.3
AP - psid 2.67
Exit Quality 1.0
Tn- °R 559.0
Tou - °R 404.9
P, psic 8.6
Pout - psia 7.25
AP - psid 1.35

167.0
263.0
538.8
534.0
48
0.1

4315
2141
692.0
692.0

0.0

FD 278846

Figure 71. RLI0-1IB Engine ——Gaseous 0xygen Heat Exchanger Geometry (At Pumped
Idle Design Point)
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No. Piates

Passage Diameter, in.
Flow Area, in.2

Heat Transfer Area, ft?
Core Waeight, Ib
Insulation Type
Insulation Materia!
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Thermal Skin
3.125 Geometry Blow-Up

02 Plate
(Turned 90°)
\

0.015—a] [

H, Plate O, Plate

12.0 11.0
0.0513 0.0336
1.213 1.602
5.2
75
2% Dense Metal Feit (0.150 inches compressed to 0.084 inches)
300 Series Stainless Steel

Heat Exchanger Performance

Design Point Off Design

Tank Head Idle Pumped Idle Full Thrust

m(H,), - Ibm/sec 0.0106 0.7182 0.006
m(0,), - ">m/sec 0.339 2.84 1.00
T, (H,) - °R 538.0 324.0 261.0
T, (0,) - °R 166.0 167.0 167.0
T,.(Hy) - °R 476.0 310.0 236.0
T, (0,) - °R 168.0 168.0 168.0
AP (H,) - osi 0.5 J.1 ~0.0
AP (Oy) - psi 0.354 0.7 0.08
0, Exit Quality 0.1 0.0 0.0
Q - Btu/ser: 24 1.0 0.55
Q/A, Average - Btu/ft?.sec 0.56 0.19 0.102

FD 278947

Figure 72. RL10-14B Engine — Gaseous Ovvgen Heat Exchanger (Siage 1 Core)
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14.0

Dimensions of Core l¢

7

9.0

02 in
3.125

4

H, in /

All Dimensions Are in Inches

Hz Plate

0O, Plate (Turned 80°)

Geometry

No. Plates

Passage Diameter, in.
Flow Area, in.?

Heat Transfer Area, ft?
Core Waeight, Ib
Insulation Type
Insulation Material

Thermai Skin
Geometry Blow-Up

0.015

0.015 —= I-— 0.04

[—0.015
| }=—0.08"—=

——

w————

[z zzdiari iz

H, Plate

02 Plate

20.0
0.0513
8.199

19.0
0.0336
2.77

36.6
53.3
5% Dense Metal Felt

Nickel 200

Heat Excharger Performance

m(H,), - lbm/sec
m(O,), - Ibm/sec
T (H) - °R

Tln (02) - °R

Tou (H2) - °R
Tout (02) -3

AP (H,) - psi
AP (O,) - psi

O, Exit Quality
Q - Btu/sec
Q/A, Average - Btu/ft?.sec

Design Point Off Design

Pumped Idle Tank Head Idle  Full Thrust

0.1638 0.098 0.054

2.84 0.339 1.00

324.0 538.0 260.9

168.1 168.0 168.3

230.0 397.0 2117

199.0 449.0 195.5

0.10 0.53 ~0.0

1.50 1.72 0.08

0.1 1.0 0.0

60.5 65.34 10.89

1.653 1.785 0.297

Figure 73. RL10-1IB Engine — Gaseous Oxygen Heat Exchanger (Stage 2 Core)
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3
. Dimensions of Core
1
/\‘-4-4.0-4 / 0, In
5.0
. \[ Thermal Skin
| f H, in Geometry Blow-Up
6.065 0.015
‘ 0.02
‘ H, Plate ]
0.08
O, Plate L {
All Dimensions Are in Inches U0 90°) LS [
———1 '-—0.015
Geometry
H, Plate O, Plate
No. Plates 87.0 86.0
Peassage Diameter, in. 0.0336 0.0336
Flow Area, in.2 6.475 5.180
Heat Transfer Area, ft? 21.3
Core Weight, Ib 19.3
Heat Exchanger Performance
Design Point Oft Design
Pumped idle Tank Head Idle  Full Thrust
m(H,), - Ibm/sec 0.182 0.109 0.06
m(0,), - Ibm/sec 2.840 0.339 1.000
T (Hy - °R 639.n 559.0 431.5
Tn (O) - °R 199 449.0 195.5
Tou (H2) - °R 324.0 638.0 260.9
: Tout (O2) -~ °R 209.0 539.0 263.2
: AP (H,) - psi 0.30 0.82 0.0
: AP (O,) - psi 4.28 0.30 0.02
! 0, Exit Quality 1.0 1.0 0.1
’ Q - Btu/sec 213.0 14.197 40.2
} Q/A, Average - Btu/ft?.sec 10.0 0.666 1.887
FD 276949

Figure 74. RL10-1IB Engine — Gaseous Oxygen Heat Exchanger (Stage 3 Core)

5 71

KO

B o Y RN - - . i



7

Pratt & Whitney
FR-18046-3

Stage 2 was designed so that no urstable boiling of the liquid would occur at pumped idle
flow conditions. It required 40% dense metal fiber insulation between the hydrogen and oxygen
plates. This insulation is too stiff to conform to the plate surface and therefore must be brazed to
the plates. The calculated equivalent conductivity of the 0.025 inch thick insulation and braze is
0.294 Btu-ft/ft>-hr-°F. The maximum allowable heat flux for stable boiling at PI is 2.62 Btu/ft?
sec. The calculated maximum heat flux for this configuration is 2.41 Btu/ft?sec at PI.

Stage 3 of the OHE was designed to deliver 209°R superheated oxygen at tue PI design
point. The oxygen that flows through stage 3 is always above 5% quality so no insulation is used.
The average heat flux at pumped idle is 10.0 Btu/ft? sec.

The pressure drop calculations for the RL10-1IB OHE are also based on work done in the
P&W Space Tug Engine Study (P&W Report No. FR-7498). The hydrogen flow is all single-
phase and the pressure drop calculations were straightforward. The oxygen flow is a combination
of single-phase flow and two-phase flow at the PI design point. Oxygen single-phase flow occurs
in stage 1, the first half of stage 2, and the end of stage 3. Two-phase oxygen flow occurs in the
last half of stage 2 and most of stage 3. Two methods were used to calculate the two-phase flow
pressure drops. The homogeneous model is most accurate at low vapor qualities and the
separated flow model, with the Martinelli-Lockhart correlation, is more accurate at higher
qualities (and also gives higher pressure losses). The total cxygen pressure drops at PI using the
homogeneous and separated-flow models are 4.4 psid and 7.1 psid, respectively. Since the
Martinelli-Lockhart separated flow mode! is the more conservative method, it was used for
calculation of all two-phase oxygen pressure drops.

The initial design of the OHE, based on the above analyses, was a silver-brazed Type 347
stainless steel cores and end closures. The calculated weight of the design was 130 pounds (Ref.
Layout Drawing No. L-238388, Sheets 1-3). This weight was unacceptable to NASA, even for a
demonstration unit. An engineering review of the design indicated that it could be changed to
6061T-6 aluminum with minor design modifications. The calculated weight of the aluminum
OHE was 51 pounds, but there was reluctance to make the change because ¢f the potentially
more difficult fabrication (very limited P&W experience with aluminum welding and brazing).
However, after weighing the known risks and benefits the decision was made to go with
aluminum and the redesign was accomplished (Ref. Layout Drawing No. L-238388, Sheets 5-7).
Predicted heat transfer performance was essentially the same as for the stainless steel design, but
the second stage insulation had to be changed to compressed nicke) felt 14 obtain the required
heat transzer coefficient with metal-to-metal contact instead of brazed surfaces.

Concerns with producibility of design tolerances for photo-etched flow passage dimensions,
insulation conductivities, fluxless vacuum brazed construction, and the heat transfer analysis
resulted in unplanned design support efforts to determine their validities. As a result,
modifications to the flow passage groove dimensions and shapes were found necessary tkrough
sample panel etchings to assure producibility for the required flow areas. Flow passage geometry
was revised accordingly.

Also, conductivity data could not be found on metal felts used to limit heat transfer at the
OHE Stages 1 and 2 operating conditions. Contacts witl. various testing laboratcries resulted in
the selection of Dynatech, Inc., Cambridge, Mass. to perform conductivity testing. A decision had
been made early in the OHE design effort to provide access to the insulation rpaces for venting
during brazing, and allow the use of vacuum or pressurized gases to tailor insulation
conductivities if necessary. Accordingly, the conductivity tests of stainless steel and nickel felts
by Dynatech covcred vacuum, Nitrogen and Helium atmospheres at OHE design thicknesses. A
schematic of the test setup is shown in Figure 75. The results are given in Table 5. They showed
that the effective conductivities in the planned Nitrogen atmosphere was far below the values
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predicted during the design an¢ es, but by varying the atmosphere acceptable results could be
produced (Ref. Dynatech Report No. PRA-105, October 1983).

Initial contacts with potentia! aluminum heat exchanger fabrication vendors resulted in
design changes to improve the pruc icibility of the aluminum OHE designs. Modifications to
increase stages 1 and 2 thermal skin cover panel thickness were made to reduce the possibility of
braze alloy silicon diffusion through the perent material (potential porosity) and to provide
raised edges to allow for weld repair of the panel-to-header slot braze joints, if necessary. These
modifications however increased both the size of the OHE and the calculated weight from 51 to
55 pounds. The modifications are shown on P&W Layout Drawing No. L.-238388, sheets 8-10.
Sheet 4 of drawing L-238388 presents the OHE mount provisions for the breadboard engine.

An independent heat transfer analysis of the initial stainless steel designs was conducted by
Optics and Applied Technology Laboratory (OATL), a aivision of United Technologies Research
Center (UTRC). The same propellant supply conditions, flow rates, and ir:sulation conductivities
used for the design analysis were specified. A 100 node finite element cross flow heat exchanger
computer analysis program previously developed by UTRC was modified by OATL to utilize the
OHE design configuration, propellant conditions and characteristics, and insulation conductivi-
ties. This computer code provides a more detailed analysis since it separates each stage of the
heat exchanger into a nodal array and computes the heat transfer and pressure drop for the
volume represented by each node based on local flow conditions. This is of particular importance
during oxygen vaporization (two phase flow) when the fluid properties can vary dramatically.
This analysis, as summarized in OATL Report No. 83R-280169-3, dated 24 August 1983,
predicted higher heat transfer rates than the coriginal design analysis in the two-phase flow
regions of the OHE. Consequently, the higher heat transfer in Stage 3 at PI would cool the fuel
too much and prevent sufficient heat transfer in stage 2. As in the design analysis, the
substitution of aluminum for stainless steel had a negligible effect on core performance.
However, the possibility of excessive conductive heat transfer in stages 1 and 2 oxidizer inlets,
where the hydrogen panels were brazed to the oxygen headers, was recommended for additional
analysis. The OATL computer program was furnished to P&W for analysis review and
development of design modifications.

The design reanalysis (reported in R. J. Peckham to J. S. Henderson memorandum of %/
August 1983 and included in this report as Appendix C), recommended a 12% increase in Stage 2
insulation conductivity, and a reduction in Stage 3 heat transfer by plugging approximately 9%
of the propellant flow passages. An alternative solution that involved reversing the hydrogen flow
path and a reducing stage 2 insulation conductivity by a factor of 9 with no change to stage 3 was
also included in the memorandum. Subsequent nickel felt insulation conductivity tests showed
only 5% of the predicted (initial design) value in a nitrogen atmosphere, but twice the required
reversed-flow configuration conductivity in helium. Entrance conductivity was reduced by
spacing the internal I';panels awey from the O, headers and plugging two of the H, passages of
the two external panels at the edges where they are brazed to the 0, headers. The resultant
breadboard configuration schematic and predicted fluid conditions are shown in Figure 76 and
the stage 2 computer program results at PI are shown in Figure 77. The final design is shown on
P&W Layout Drawing No. L-238388, sheets 8 through 10.
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Table 5. Thermal Conductivity Test Results

FR-18046-3

Hot Plate Temperatures
(Part a. Test Material: 2% 304 SST FeH)

T, =370°R T, =393°R T, =41T°R
AT, = 241°R AT, = 264°R AT, = 288°R
Nitrogen  0.01108 Bt 0.01125 __Buw oor217 __ Bw
hr-ft-°R hr-ft-°R hr-fi-°R
Helium 0.0526 _ Bw
hr-ft-°R
Vacuum 0001175  __ Bty
hr-ft-°R
Other Conditions:
Material Thickness (Uncompressed): 0.150 in. nom.
Material Thickness (Compressed): 0.084 = 0.002 in
Cold Plate Temperature: 129°R
Hot Plate Temperatures
(Part b. Test Material: 5% Ni Felt)
T, = 178°R T, = 216°R T, = 252°R
AT, = 35°R AT, =73R AT, = 109°R
Nitrogen 0.0148 __ Bt
hr-ft-°R
Helium 0.0565 __ Bt
hr-ft-°R
Vacuum 0.00592 ___EEI___
hr-ft-°R

Other Conditions:

Test Material: 5% Ni Felt

Material Thickness (Uncompressed): 0.35 in. nom.
Material Thickness (Compressed): 0.020 + 0.002 in.
Cold Pleie Temperature: 143°R
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Oxygen

T = 199°R

P = 90.8 psia

Quality = 0.12
Hydrogen Exit
Tin = 260°R
Py, = 46.2 psia

m= 0.182 Ibm/sec

FR-18046-3
Mixture Ratio (O/F) = 6.0
Stage 2 Insulation Conductivity = 0.033 Btu/ft-hr°R
Hydrogen inlet
Tout = 639°R
Pow = 47.1 psia
A
Oxygen Inlet Stage 1 )
Tm = 167°R -
P, = 84.3 psia
m = 2.84 Ibm/sec
= Stage 2
L
Hydrogen
T = 547°R /
P = 46.6 psia / Stage 3
Oxygen Exit
Tot = 198°R
Poit = 783 psia
Quality = 0.95

FD 278950

Figure 76. RLI10-IIB Oxidizer Heat Exchanger — Pumped Idle Performance (Reversed

Hydrogen Flow)
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SECTION V
BREADBOARD CONTROLS DESIGNS

The four breadboard controls to be used for the low thrust demonstratnon program were
designed and tested during earlier RL10 engine variable thrust programs. They are to he used to
perform the functions of the cavitating venturi valve (CVV) turbine bypass valve (TBV), gaseous
oxidizer valve (GOV), and liquid oxidizer flow ontrol. Each is a variable area. hydraulically-
actuated valve capable of being scheduled to preprcgrammed positions for THI, PI and FT
operation. Valve position feedback is provided by a position potentiometer. The breadbhoard
components are discussed in the following paragraphs.

The breadboard CVV, (TL-215351) design is shown in Figure 78. The primary construction
materials are aluminurm and stainless steel. It is a high-recovery design and has a throat pressure
tap. The calibration curve, showing effective area versus pintle travel, is shown in Figure 79.

The breadboard TBV (S/N CKD-1188) shown in Figure 80 was originally designed and
used as a liquid control valve for RL10 throttling engine demonstrations. It is a 90 degree
contoured port sleeve valve driven by a rack and pinion with a feedback potentiometer driven by
the pinion through a flexible ccunling. Housing materials are aluminum and drive materials are
stainless steels. The calibration curve showing effective area versus actuator shaft rotation is
shown in Figure 81.

The breadboard GOV (S/N CKD-1311) is shown in Figure 82. It is a direct-drive butterfly
valve with vertical shaft, and shutoff via butterfly to housing interference. Again, basic housing
construction materials are aluminum and drive materials are stainless steel. The feedback
potentiometer is driven by the actuator lever which is attached to both the butterfly shaft and
the potentiometez. The calibration curve showing effective flow area versus actuator shaft
rotation is shown in Figure 83.

2

FD)280452
61584
HPH

Disk 4

//////1///////////////////////////////////7
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FD 280452

Figure 78. RL10 Cavitating Venturi Valve (CVV)
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(] - Tank Head !dle and Full Thrust
- Pumped ldle
0.25 — A
0.20
CVV Effective
Area (Agp) - in?
Aco 0.15 b—
0.10 /
0.05 ﬂ/
0 0.2 04 0.6 08 1.0 1.2
Pintle Travel - in. Open
FD 280453
Figure 79. Cavitating Venturi Vaive (CVV); S/N B54X-012; Operating Characteristics
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Figure 80. Turbine Bypass Valve (TBV) Assembly
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Breadboara Turbine Bypass Valve (TBV) Operation, Tank Head Idle and
Pumped Idle
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Figure 82. RLI10 Gaseous Oxidizer Valve (GOV)
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FD 280457

Figure 83. Gaseous Oxidizer Valve (GOV) Operation (S/N CKD-1311)
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A fourth breadboard valve that is not specifically a part of the Low Thrust Program, but
provides extra fleribility for liquid oxidizer control is the oxidizer control valve (OCV), which will
be used instead of the RL.10A-3-3 engine oxidizer flow control (OFC). The valve is assembled as
P&W part number BKD 7935 and is shown in the exploded view in Figure 84. It is essentially a
modified OFC that provides complete liquid oxidizer flow control from shutoff to full thrust flow.
The basic construction is consistent with that of the RL10A-3-3 OFC, with varts modified to
eliminate unneeded functions and to provide a contoured flow contro] and minimum-clearance
shutoff pintle instead of the RL10A-3-3 propellant utilization (PU) pintle. The calibration curve
showing effective flow area versus actuator shaft angle is presented in Figure 85.

Design modifications to the turbopump were confined to those necessary for incorporation
of the 2.1:1 ratio drive gears (fuel pump to oxidizer pump) and the single-bearing idler gear (both
of which are features that were demonstrated in earlier RL10 programs). The only turbopump
design effort in this analysis and design task was to adapt the 2.1:1 ratio gear design to the
RL10A-3-3A engine pump shafts and modify the oxidizer pump elbow housing to the shorter
shaft center-distance required by the 2.1 gears (showr. on P&W drawings 1238361 and
SL-238056 respectively).

The injector was modified to incorporate the torch ignition system, and the 120 ¢fm Bill-of-
Materials fuel plate rigimesh was replaced by 240 cfm AISI 347 rigimesh to provide more face
conling flow during low thrust engine operation.

Heat exchanger mockups were built and used to modify existing throttling engine plumbins
and to route new plumbing, as necessary, to install the oxygen heat exchangers and breadboard
valves on the basic RL10A-3-3 engine. No designs or engineering drawings were produced for the
breadboard engine. Mockup photographs at the end of the fabrication stage were used to
document the configuration. The photographs of the breadboard demonstrator low thrust engine
mockup are shown in the summary as Figures 1 to 4.
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APPENDIX A
ENGINE STEADY STATE CYCLE CALCULATIONS

The computer cycle program can be balanced in three ways: it can be balanced (1) to a
particular vacuum thrust and inlet mixture ratic (2) to particular oxidizer flow control and
turbine bypass valve effsctive areas, or (3) to a particular chamber pressure and oxidizer flow
control valve effective area. The first method is used to define control valve areas for use in
,unning the other options. Since the engine operates in the pumped idle mode with fixed control
areas, the second option is normally used to determine the effects of inlet pressure variations
and/or changes in tank pressurization flow rates in that operating mode. The third method is
used to simulate engine operation at full thrust wherc chamber pressure is held constant by the
thrust control. This option is normally used to evaluate the effects of changing inlet conditions
and other variables on engine operation while operating at full thrust.

A schematic of the RL10-IIB engine off-design cycle computer program is shown in
Figure A-1 ard Table A-1.

A-1
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Input Input input
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Figure A-1. Cycle Schematic of the RL10-IIB Off-Design Computer Program
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Table A-1. Symbol Usage in Figure 4A-1. RL10-IIB Cycle
Schematic Nuomenclature (Continued)

ABYP Bypass Valve Area
ACDOCI  Input Oxidizer Control Valve Area
ACDOCV  Oxidizer Control Valve Effective Area

AFI Fuel Injector Area

AFlJ Fuel Injector Effective Area

AOI Oxidizer Injector Area

AOIJ Oxidizer Injecter Effective Area
ARN Nozzle Area Ratio

AT Turbine Area

BPACDI  Input Turbine Bypass Valve Area
N Characteristic Velocity Efficiency
nCFO Thrust Coefficient Efficiency

CFVAC’ Ideal Thrust Coefficient

CSTAR' Ideal Characteristic Velocity

CS Nozzle Boundary Layer Loss and Divergence Loss
DNIMP Dump Nozzle Impulse

EFFFP Fuel Pump Efficiency

EFFOP Oxidizer Pump Efficiency

ETAT Turbine Efficiency

FHIJ Fuel Injector Inlet Enthalpy
FNPSP Fuel Pump Inlet Net Positive Suction Pressure
FOI Input Thrust

FPDP Fuel Pump Discharge Pressure
FPDT Fuel Pump Discharge Temperature
FPIP Fuel Pump Inlet Pressure

FPIT Fuel Pump Inlet Temperature
FPLJ Fuei Injector Inlet Pressure

FTLJ Fuel Injector Inlet Temperature
FTIP Fuel Turbine Inlet Pressure

FTIT Fuel Turbine Inlet Temperature

FVAC Thrust
FVACDEL Delivered Vacuum Thrust
FVAC4 Pseudo Thrust

HPI Fuel Pump Horsepower

HPO Oxidizer Pump Horsepower

IVAC Vacuum Specific Impulse at RMC
IVAC' Ideal Impulse

IVACDEL Delivered Vacuum Impulse

nio Impulse Efficiency

JFIP Jacket Inlet Pressure

JFTIT Jacket Inlet Temperature

AKE Nozzle Kinetic Loss

ONPSP Oxidizer Pump Inlet Net Positive Suction Pressure
OPDH Oxidizer Pump Discharge Enthalpy

OPDP Oxidizer Pump Discharge Pressure
OPDT Oxidizer Pump Discharge Temperature
OoPlJ Oxidizer Injector Inlet Pressure

OPIP Oxidizer Pump Inlet Pressure

OPIT Oxidizer Pump Inlet Temperature

AP Main Heat Exchanger Pressure Loss
PC Chamber Pressure

PCI Input Chamber Pressure

P/P Pressure Ratio

APLOLJ Oxidizer Injector Pressure Loss

RMC Chamber Mixture Ratio

RMI Inlet Mixture Ratio

RPM Fuel Pump Speed

AT Main Heat Exchanger Temperature Rise
VR Isentropic Velocity Ratio

Whyvpass Bypass Flowrate

- B A g e
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Table A-1. Symbol Usage in Figure A-1. RL10-IIB Cycle
Schematic Numenclature (Continued)

WF Inlet Fuel Flowrate

WFC Chamber Fuel Flow

WOTP Oxidizer Tank Pressurization Flowrate
WFTP Fuel Tank Pressurization Flowrate
WLEAK Coolant Flow to Gearbox and Dump Nozzle
wo Oxidizer Flowrate

WPC Chamber Propellant Flowrate

WT Turbine Flowrate

The pump operating characteristics are simulated in the programs using head coeffi-
cient/flow coefficient and efficiency/flow coefficient relationships derived from RL10 pump test
data. The characteristics used in this program for the main pumps are shown in Figures A-2
through A-8.

Turbine efficiercy characteristics were obtained from RL10 turbine rig test data and are
used in the simulation as functions of isentropic velocity ratios.

Main chamber and primary nozzle off-design coolant pressure loss and temperature rise
characteristics are simulated in the programs with regression equations that calculate AP and AT
characteristics as functions of fuel flow, chamber pressure, characteristic velocity efficiency,
jacket inlet pressure, chamber mixture ratio, and combustion temperature. The equations are
shown in Table A-2. They were generated by fitting test data and analytical predictions of
chamber-nozzle heat transfer characteristics. Chamber-nozzle performance is calculated in the
cycle programs by applying performance loss characteristics obtained from various Joint Army
Navy NASA Air Force (JANNAF) performarnce programs to JANNAF One Dimensional
Equilibrium (ODE) ideal performar.ce predictions.
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Fuel Pump
Efficiency

0.5
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Fuel Flow Coefficient

FD 280461

Figure A-2. Fuel Pump First Stage Performance Characteristics (Fuel Pump Efficiency);
RL10-IIB Ergine
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Figure A-3. Fuel Pump First Stage Performance Characteristics (Head Coefficient); RL10-
IIB Engine

0.6

0s A

/

Efficiency /
0.3 /

0.2
0 T

0 0.01 0.02 0.03 0.04 0.056 0.06 0.07

Fuel Flow Coefficient
FD 280463

Tigure A-4. Fuel Pump Second Stage Performance Characteristics (Fuel Pump Efficiency);
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Figure A-5. Fuel Pump Second Stage Performance Characteristics (Head Coefficient);
RL10-1IB Engine
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Figure A-8. Turbine Efficiency Characteristics — RL10-1IB Engine
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Table A-2. Main Chamber and Primary Nozzle Heat Transfer Predictions

The following equations are used to predict the off-design main chamber and primary nozzle coolant
temperature rise and pressure loss characteristics:

K1XRPC’** X RPIN°™ x RECS'®! X RTC**"

T =
a RRM"!® X RWF®**

v

aP = [gF1p — (sFip* ~ (Jigs ) X (hANSs ) X PAVGD X PD x 2 )] x1.73

. ——— Nl = b

where:
AT = Coolant temperature rise at off-design point
AP = Coolant pressure loss at off-design point
K1 = Constant to set the design point ievel
REC - Chamber pressure
19.0
RPIN = Inlet Pr-ssure of Coolant
70.0
RECS = Tes
0.94
RTC - Combustion Temperature
7147.0
RRM = Chamber Mixture Ratio
5.0
RWF = Coolant Flowrate
0.298
JFIP = Coolant Inlet Pressure
WFCD = Coolant Flowrate at Engine L Lot

TAVGD = Average Temperature of Coolant in Jacket at Engine Design Point
PAVGD = Average Pressure of Coolant in Jacket at Ensine Jesign Point
APD = Coolant Pressure Loss at Engine Design Point

WFC = Coolant Flowrate at Off-Desizn Point

TAVG = Average Temperature of Coolant in Jacket at Off-Design Point

Off-design heat transfer chara teristics for the GOX heat exchanger are simulated in the
programs using correlations established for similar heat exchanger configurations. These
correlations are for a compact configuration. The equations used are shown in Table A-3.

A-8
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Table A-3. Oxygen Heat Exchanger

Heat Transfer Predictions

The following equations are used to predict the off-design GOX heat exchanger heat transfer characteristics in
the off-design cycle programs:

C = Lowesat of CPO X Wo or CPF X WF

C

Highest of Cp X Wg or Cp, X Wi

UA = Overall Heat Transfer Coefficient X Surface Area

XNTU = _UA
C

. Coin
Efectiveness = f (-C— , XN’I'U) , from curve
Heat Flux = Effectiveness X (TFIN-TOIN) X C_;,

‘Kays, W. and London, A. L., Compact Heat Exchangers, McGraw-Hill, New York, 1954.
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APPENDIX B
DEFINITION OF ENGINE TRANSIENT CHARACTERISTICS

Two transient computer simulation programs were used to define the transient characteris-
tics and control system requirements fo, the RL10-1IB engine. On: of these programs was used
to simulate turbopump cooldown (THI transients). The other program simulated acceleration
transients to PI and FT for the engine.

Tank Head Idle simulations can be made with various pro, _llant conditions (gas, liquid or
two-phase), and various initial metal temperatures. The methods used to simulate the
components in the transient simulations are similar to those used in the steady state cycle
program. Th. major differences in the programs are the dynamics included in the transient
programs and additional routires required for THI cooldown.

1. ACCELERATION TRANSIENT SIMULATION

Figure B-1 and Table B-1 present a simplified flow schematic thut shows the more
important calculations and convergence loops used to simulate the RL10-IIR engine operation
during acceleration transients. Dynamics are among the main considerations in th:s program. A
brief discussion of the dynamics used is included later in this Appendix.

B-1
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Figure B-1.

Combustion Chamber
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1
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Transient Simulation Flow Schematic — RL10-IIB Engine
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Table B-1. Symbol Usage in Figures Bl and B2
A Area — inches?
AS Surface Area, inches’
C Capa-itance
c, Specific Heat Capacity — Btu/lb,, — °R
: C, Nozzle Boundary Layer Loss and Divergence Loss
DKE Nozzle Kinetic Loss
' dt Time Increment, seconds
EFF Efficiency Terms (Cs, DKE, 1,.)
FSV Thrust — Iby
HYD Hydraulic Diameter — inches
H Enthalpy — Btu/lb,
h Heat Transfer Coefficient — Btu/hr — ft2 — °R
n Lfficiency (pump or turbine)
Mivac Vacuum impulse efficiency
) Ideal Vacuum Specific Impulse — sec
J Turbopump Polar Moment of Inertia — R-Ib-sec?
N Turbopump Speed — RPM
P Pressure — psia
AP Pressure loss — psid
Pt Ambient Pressure — psia
Pc Combustion chamber pressure — psia
Q Heat transferred — Btu
R Dinsity — Ibm/ft?
r Mixture ratio :
Re Gas Constant — ft-lbs/°R-Ibm
S Entropy — Btu/lb-°R
T Temperature — °R
t Time — seconds
" Temperature rise — °R
TAU Transient response time constant — second
TQ Torque-ft-lbs
™ Wall temperature, °R
v Velocity — ft/sec
VR Turbine Velocity Ratio
w Flowrate — lbm/sec
WD Dump coolant flowrate — lbm/sec
WFTP Fuel tank pressurization flowrate — ibm/sec
WLTP Ozxidizer tank pressurization flowrate — lbm/sec
W' Fuel flowrate calculated at second stage discharge — lbm/sec
w,' Oxidizer flowrate cilculated through oxidizer injector — lbm/sec
X Propellant Quality
Z Component (Impeller, pump housing, etc.) mass — lbm
v Specific heat ratio
Subscript Description
1, 2,. . . 16 Stetion locations
BP Boost pump
C Combustion chamber
D Discharge
f Fuel (propellant)
FP, Fuel pump, 1st stage
FP, Fuel pump, 2nd stage
0 Oxidizer propellant
P Previous value
T Turbine
U Upstream
Average

B-3
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2. TANK HEAD IDLE COOLDOWN SIMULATION

Figure B-2 and Table B-1 presents a flow schematic which shows how the RL10-IIB engine
is simulated during a tank head idle cooldown transient. Since the effects of fluid dynamics
during the transients are insignificant compared to the effects of thermal dynamics, steady state
flow is assumed to exist at each time increment during the THI transients and a Newton-
Raphson rapid convergence technique is used to balance the simulation at each increment. The
independent variables used to balance the programs are fuel flow, pressure at the inlet of the
primary nozzle heat exchanger, and chamber pressure. The dependent variables are fuel flow,
primary nozzle heat exchanger exit pressure and combustion chamber inlet and outlet flows. Fuel
flow, inlev pressure to the heat exchanger, and chamber pressure are varied at each time
increment until: (1) the assumed fuel flow at the heat exchanger inlet equals the flow calculaied
through the second stage of the fuel pump, (2) the pressure calculated at the exit of the primary
nozzle heat exchanger equals the pressure calculated at the inlet of the turbine bypaas valve, and
(3) the total flowrste entering the combustion chambei equals the flowrate calculated at the
throat of the chamber.

3. METHOD FOR SIMULATING ENGINE DYNAMICS
Dynamic performance characteristics are determined by numericaily integrating time-
varying differential equations. This is accomplished by calculating the differentials from known
variables such as pressures, flowrates, speeds, etc., multiplying the differentials by the time
increment (DT) selected for the program, and adding the result to the last calculated value of the
parameter being integrated. The technique of numerical integration is shown by the following
example where flowrates through a known control volume are integrated to obtain the pressure
within the volume.
The integral equation is defined by:
P=[ZWdt
where P is pressure
and T W is summation of flow rates crossing volume boundaries
Expressing the equation in finite difference form:
P, =P, +AP
where P, is pressure 2t time = o
and P, _, is pressure at time = n—1
Using numerical integration

AP =XW.DT

where DT = integration time increment

B-4
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Notes:

Eqt aons:

Q =fh,

Indepencent
Variables
We
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[
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I

(1) Standard Tank Head
idis Heat Transfer

., C._h AS, T, dc
" X, Hvo, W, ’V)
W, T, dt)

V, = W, n,, P, A)

Vo = W, Hy, Py, A)

Hy = Q. Vy, Vg, Hy)

Sg, Ta Xg= Py, Hp)

(2) Newton Raphson
Convergence Technique:
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This method of numerical integration is used to define the dynamic behavior of the engine.
The dynamic elements that have been simulated include:

1. Acceleration of oxidizer and fuel pumps
2.  Thermal dynamics of the pump (cooldown)

3. Thermal dynamics of the primary nozzle heat exchanger and t+. oxidizer
heat exchanger (OHE)

4.  Fluid dynamics of the heat exchanger and main chamber.

The integration time increment (DT) is an input variable. The DT value normally used
provides a compromise between simulation accuracy and the amount of computer time required
to run the simulation. The DT varies depending upon the operating mode of the simulation.

A simulation of the tank head idle mode requires much more computer time than a
simulation of the turbopump acceleration to full thruct. During a cooldown, fluid dynamics are of
secondary importance: to thermal dynamics. This permits a large time iucremeat (1.0 second) to
be used for THI to minimize computer time. To accommodate the large DT and prevent
“mathematical instabilities,” steady state flow is assumed during the cooldown. Dynamic heat
transfer equations are used to simulate the component cooldowns, and flowrates and pressures
are calculated as functions of the exit temperatures, pressures, and densities.

At the conclusion of cooldown when the turbopumps are started, the DT is reduced to 0.001
seconds to permit the: turbopump acceleration dynamics to be considered. During accelerations to
pumped idle (PI) and to full thrust (FT) the turbopump and fluid dynamics become very
significant.

4. METHOD FOR SIMULATING ENGINE COOLDOWN

Special calculations are required to simulate the transient thermal conditioning of the
engine. These routines were developed for the RL10 engine and checked using RL10 test data
generated under simulated space conditions at the NASA-LeRC Plum Brook station.

For this simulation, a quasi-steady state solution of th2 con .entional lumped mode thermal
energy transfer and storage equation is made Conduction, heat storage, phase change, free and
forced convection capability, and raaiation boundary conditions are all considered. Temperature-
variable solid and fluid properties arc used.

The engine lines, housings, valves, etc. are transformed into equivalent rods and cylinders.
‘The thermal model then performs a one-dimensional, quasi-steady-state heat transfer analysis of
the engine system. A particular component of the engine may be subdivided into several such rod
and cylinder combinations which may be linked together in different flow and conduction path
patterns. A simulation of a typical engine fuel pump is shown in Figure B-3.

A typical engine cooldown calculation is shown in the following example. In this case, the
engine system is made up of components (rods and cylinders) at some initial temperature, and it
is subjected to knov'n external heat loads and fluid inlet conditions. The system is evaluated over
a small time increment and an energy balance is made for the first rod/cylinder combination,
The change in energy stored in the cylinder is determined by calculating the heat removed from
the cvlinder by the convective process of the coolant flow, and subtracting the heat added to the
system from external sources. The energy change of the rod is also determined by subtracting the

B-6



—

el

~°

L

tey ¥

rp T‘i\‘“ N

Pratt & Whitney

FR-18046-3
APPENDIX B

heat removed by the convection process of the coolant. The energy increase of the coolant then
becomes the sum of the heat energies removed from both the rod and cylinder. This energy is
added to the fluid in the form of enthalpy, and velocity increases arc determined by continuity
and energy conservation equations. The properties of the coolant leading the first component
become the inlet conditions for the next component and the calculations are repeated for each
component in the system. The basic equations used to calculate the thermal characteristics of the
components during THI cooldown are:

1. Q1 = h A, (Ty, — T)dt
2.Q = hA,(Ty, — T dt

3. Qrora. = Q1L +Q2

QTOTAL

\A \'A
4. H, = H + —gg— + (—2—‘ - —,{-) X 47205
5. pV, = 0.V,

where Q@ = heat transferred — Btu

= area, ft,

heat transfer coefficient — Btu/sec — ft2 — °R
Temperature (Average) — °R

= delta time increment — sec

fluid enthalpy — Btu/lbm

fluid velocity —- ft/sec

fluid density — Ib/ft3

o

c<meaT»>
|

and subscripts

1 = upstream condition or outer component (cylinder)
2 downstream condition or inner component (rod)
w wall condition

The enezgy removed from each component has now created a system imbalance in the form
of temperature gradients between the rods and cylinders and their adjacent components. This
imbalance initiates a conduction process which alters the distribution of the remaining energy in
the system and reduces the temperature gradients. The transfer of conduction energy is
determined by solution per the second law of thermodynamics. The solution obtained at the end
of one time increment provides the starting condition for the next time increment and the
analysis is continued until the temperatures of critical components (pump housings and
impellers) reach the desired steady state levels.

B-7
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Fuel Pump

Figure B-3. Heat Transfer Model Simulates Thermal Conditions of Components and Fluids

v

Q Ambient Heat Flux
(Free Convection + Radiation)

Q Thermal Storage

Fluid
Flow
D

Q Housing-Fluid
(Forced Convection)

-

W Q Imneller-Fiuid
(Forced Convection)

—L

Q Between Components
{Conduction)
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ANALYSIS OF RL10-IIB GOX HEAT EXCHANGER

“

‘e PRATT & WHITNEY AIRCRAFT GROUP
Government Products Division

TNTENIAL CORRESPONDENCE RL10 / HEAT TRANSFER

'83-752-11280

FR-18046-3
APPENDIX C

PRATT & WHITNEY INTERNAL CORRESPONDENCE MEMO — HEAT TRANSFER

To: J. Benderson

Prom: R. J. PECKHAM EXT. 2938

Subject: The RL10 Derivative IIB GOX Heat Exchanger Has
l«: Modified Using a New Heat Exchanger Computer
Dec .

Date: August 27, 1983 '

Copy To: J. Bolch, J.D. Doernbach, T. Kmiec, C. Limerick,
8. Owvens .

SUMMARY:

The RL10 Derivative IIB GOX heat exchanger has been revised
after a review ,of the analysis showed performance below
pumped idle design gosis. The new analysis was done with a
new heat exchanger uter deck which does a mcre detailed
analysis. The major difference between the new analysis an?
original analysis is due to differences between the stage 3
blue print, (B8/P), geometry and the gecmetry used in the
original analysis. Once the new heat exchanger geometry was
incorporated into the original model, the two analytical-
techniques:- agreed closely. Some changes to the design of
the GOX heat exchanger have been made that will make the
heat exchanger work properly at pumped idle. The perform~-
ance uf the modified GOX heat exchanger is included in this
memo. The heat exchanger performance was generated by using

the new heat exchanger deck because of its greater detail,
Other heat exchanger variations have been examined to

improve the tolerance to inlet conditions or to manufactur=~
’tnq problems. .

RESULTS:

0 Pigure 1 shows the pumped idle performance of.
the modified RL10 Derivative IIB GOX heat
exchanger.

o Pigure 2 shows the detailed heat flux and oxygen
quality information for the second stage of the
GOX heat exchanger at pumped idle,

o Pigure 3 shows the Stage 1 geometry of the GOX
heat exchanger with its performance characteristics.

C-1
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Figure 4 shows the Stage 2 geometry of the GOX
heat exchanger with its performance characteristics.

Figure 5 shovs the Stage 3 geometry with performance
characteristics.

Pigures 6 and 7 show the pumped idle performance of
the reversed hydrogen flow GOX heat exchanger.

Figures 8 and 9 show the pumped idle performance of
the alternate GOX heat exchanger configuration.

Figures 10 and 11 show the tank head idle performance
for two alternate GOX heat exchanger configurations
with two Stage 3 geometry heat exchangers.

CONCLUSIONS AND RECOMMENDATIONS:

1.

2.

The modified RL10 Derivative IIR GOX heat exchanger
will satisfy the design requirzments at pumped
idle.

The second stage of the GOX heat exchanger is
sensitive to hydrogen inlet temperature. The
conductivity of the Stage 2 insulation should
be able to be modified during testing for a
hydrogen inlet temperature that is different
than prediction, -
Stages 1 and 2 insulation can be varied during
testing by changing the pressure of the gas

in contact with the insulation.

The sensitivity of the GOX heat exchanger to
hydrogen inlet temperature can be reduced by
reversing the hydrogen flow direction. The
Stage 2 insulation conductivity must be
reduced to 0.033 BTU/ftehre°R,

Heat leakage from the hydrogen plates to the oxygen
plates through the headers can cause problems in
stages 1 and 2. A 0.010 inch minimum separation
must be provided between the axial flow plates and
the headers.

If fabrication problems make it impossible to make
stages 1 and 2, a alternate configuration which uses
two stage 3 geometry heat exchangers can be used.

This configuration can not be adjusted during testing

if actual inlet condition are not the same as predicted.
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DISCUSSION: ’ -

The changes to the GOX heat exchanger due to fabrication

problems that affected the heat transfer model are as fol-
lows:

1. ChLange Stages 1 and 2 flow path cov:rplates from
0.010 inches to 0.02 inches.

2., Reduced Stage 2 insulation thickness from 0.02S
{inches to 0.020 inches.

:, These modifications to the GOX heat cxchanger are needed to
- make sure hydrogen doesn't leak through the brazed aluminum.

Several changes have been made to the GOX heat exchanger to
N correct heat transfer problems. Conduction of heat from the
i hydrogen plates to the oxygen plates through the headers
) will cause oxygen boiling. instability in Stages 1 and 2. To
correct this probelm an 0.010 inch minimum separation will
be provided betyeen the axial flowpath plate edges and the
headers. Two hydrogen passages on each side of the external
plates will also be plugged since these plates must be
brazed to the oxygen headers.
The Stage 3 B/P geometry_has a higher heat transfer con-
vection area than called for 1in the original analysis. The
hydrogen and oxygen passage hydraulic diameters are also
smaller than what was used in the original analysis. The
passage hydraulic diameter is set by what can be made during
the fabrication of the plates. These differences i: the
Stage 3 geometry cause more heat to be transferred from the
hydrogen, lowering the hydrogen temperature to Stages 1 and
. 2 at pumped idle. To correct this heat transfer prcblem, i
U the total heat transfer area of Stage 3 must be rr:duced,
The number of hydrogen passages per plate in Stage 3 must be

' reduced from 52 to 47. The number of oxygen gassages per

5 plate must be reduced from 42 to 37. The conductivity of

. the Stage 2 insulation must be increased from 0.2%4
BTU/ft+hr*°R to 0.36 BTU/ftehr+*°R because of the lower Stage
2 inlet hydrogen temperature at pumped idle.

s MR AR

+

s i

! Figures 1 through 5 show the performance of the GOX heat
td exchanger with modified geometry. The modified GOX heat
. exchanger will operate without beoiling instability at pumped

idle. The exit oxygen quality of Stage 2 at pumped idle is

0.071. Stage 2 has a maximum heat flux at saturated condi-

tions below qualities of 0.05 and 2.67 BTU/ft2. sec. The

maximum allowed heat flux is 2.8 BTU/ft 2.sec at pumped
| idle. The performance of the modified GOX heat exchanger at
' tank head idle and full thkrust has not changed much from the
original analysis.

<
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The boiling stability of Stage 1 at tank head idle and Stage
2 at idle will te sensitive to insulation conductivity and
hydrogen inlet temperature. Stage 1 has the same tolerances
to insulation conductivity and hydrogen inlet temperatures
as stated in the orij.nal memo. Stage 2 has an insulation
tolerance at pumped idle of from 0.28 BTU/ftehr-sec to 0.4
BTU/ft-hr*°R with a hydrogen inlet temperature of 300°R.
The stage 2 hydrogen inlet temperature tolerance at pumped
idle is +5 °R/~10°R with an insulation ~onductivity of 0.36
BTU/ft hr-°R. The hydrogen inlet temperature tolerance can
be exceeded if insulation conductivity is modified to offset
the hydrogen temperatures. The conductivtt¥ of the insu-
lation can be varied during testing by changing tha gas in
contact with the insulation or by chanqging the pressure of
the gas. Nitrogen, helium, and hydrogen can b Jused with
the insulation. The RL10 engine can tolerate 2z boiling
instability pressure oscillation of +/-25%. The hydrogen
inlet temperature tolerances on Stage 1 scability could be
increased to +40° R/~10°R without @exceeding the npressuze
cscillation limits. .

Some alternative GOX heat exchanger configurations that
would reduce the  sensitivities of Stage 2 tc hydrogen inlet
temperature and heat flux were examined. Reversing the
hydrogen flow direction through the GOX heat exhanger will
rgduce the Stage 2 sensitivities. Pigures 6 and 7 show the
Kunpcd idle performance of the reversed h¥dtogen flow GOX
eat exchanger. The conductivity of Stage 2 must be ieduced
to 0.033 BTU/ft+hr+oR. The Stage 2 exit quality and maximum
heat flux is 0.12 and 2.3 BTU/ftl.sec Stage 2 will have a
pumped idle tolerance to hydrogen inlet temperature of from
S89 R to 689 R. The insulation conductivity can vary from
0.028 BTU/ft-hr* °R to 0.038 BTU/ftehr* * R without causing
problems, Increasing hydrogen flow to the RL10 Derivative
IIB GOX heat exchanger will alszo reduce the Stage 2 sensi-
tivity at pumped idle. To increase hydrogen flow at pumped
idle and O/F = 6.0 would require an oxygen 1injector with a
1.0 in? srea, which will not be used during the low thrust
testing.

A GOX heat exchanger configuration that uses two Stage 3
geometry keat exchangers has also been analyzed. The fircst
eat exchanger is split into two stages, Stage 1 uses 26 of
the 37 oxygen passages in the plate, Stage 2 uses ll of the
37 passages, The oxygen flow areas of Stages 1 and 2 are
3.286 in2 and 1.39 in2 , respectively. This GOX heat
exchanger configuration requires that a portion of the
available hydrogen be taken from the nump to cool the hydro-
gen to Stage 2. During tank head idle, part of the hydrogen
will need to be bypassed around the GOX heat exchanger.
This confiquration doesn't require insulation in Staves 1
and 2.

e
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*jigures 3 and 9 show pumped .- :zrfo:mance for the alter-
na.e GOX heat exchanger <3.€ ,.* rion . The alternate con-
riguration will work at pur .z ‘Jie if a hydrogen muss flow
of 0.01& lbm/sec, come: 3¢ ™ @ ¢ pumps to cool the Stage 2
hydrogzo inl=t temparat:rc -- 275°R., No hydrogen bypass
flow is requized at punr-s .dle., The Stage 2 oxygen exit
quality and maximur hear i.uy is 0,068 and 5.4 BTU/ft2.sec.
The allowable is 5.7 BYU/{t2.sec. FPlgures 10 and 11 show
the tank head idle performance of two alternate GOX heat
exchanger configuration:z which use two Stage 3 geowetry heat
exchangers. The hezt a2ichianger shown on Pigure 11 bypasses
hydrogen around tn: entiz: GOX heat exchanger. The hydrogen
bypass flow is 0.043 lbm/sec. The hydrogen flow from the
pump is 0.0265 lbm/sec., Stage 1 has an ~xygen exit quality
and maximum heat flux of 0.093 and 0.46 BTU/ftZ.sec, respec-
tively. The allowable heat flux is 0.50 BTU/ft .sec. The
configuration on Pigure 12 bypasses 0.065 lba/sec. of hydro-
gen around Stages 1 and 2, The Stage 1 exit quality and
maximum heat flux is 0.089 and 0.46 BTU/ft2-sec. The allow-
able heat flux is 0.5 BTU/ft2 .sec.

Tables 1 and 2 of the appendix show the GOX heat exchanger
performance comparison between the original and new heat
exchanger decks with B/P geometry. The original GOX heat
exchanger model ' has been modified with B/P heat exchanger
goometries which are different from what was used in the
original analysis., ‘The hydrogen exit temperatures calcu-
lated in the original computer model are now based on
enthalpy instead of specific heat. The two analytical tech-
niques for calculating heat exchanger performance agree
closely.

R. 4. Peckham
Mechanical Components & Systems
Component Design Technology

RIP:g3t % é / .
APPROVED: 77 !

T. R. Swartwout
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JIGURE

BL10 DLRIVATIVE 133
QOX HMEAT EXQUALCER GLOMETRY
WLTE PUMPED IDLE PERFORMANCE

WYDROCEN EXIT
¢  Thgyp =221 R
Mgyt = 46.4 PSIA
- L
OXYGE:!
0 =139 %
Po « 81.5 rsia
/_ - Qume.* 0.0T1
[5244.] m.rr w- €0 STAGEc
loul - l ; \
wnm
Ho- ! (] L r
/ / STAGE 3 | eemmmmases WYOIOGZN I 2-
‘ / :I\ 47.1 PSIA
T'.' s P =0.182 | i
M o 46.6PSIA /
OXYCE EXIT
TooT * 22\°R
"POgyT = 78.0°7S1A
Quay * 100%
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FIGURE
"RL10 DERIVATIVE IIB
CASEOUS OXYGEN HEAT EXCHANGER
€ I CORE
. DIAGRAM

THERMAL SKIN
GEOMETRY 3LOW-UP

007078

ﬂz ".ATE —

. IN rr‘
o -
0, PLATE / / /7 ;/ / T
- 2 %°) INS JLATION 084"
e VL
’ : %5;_4 b oz ) e a3 | _C’-CZ
d CEQMETRY ) > —
L o rum YL LA
i r( Plates 12.0 .0 -
f Passage Du..zl’.n 0.05 0.02
f Flov Araa, In 1179 1.504
‘ H/T Area, Fecl 4.81(
3 Cors Weight, Lba 7.5
4 Iasuletion CONDUCTIVITY
‘BTU/FT-HR-*R ao4l
PERFORMANCE
. PUMPED IDLE " TANK HEAD IDLE FULL THRUST
Hy W, Lbm/Sec 0.0192 0.0106 0.006
02 W, Lbm/Sec 2.84 0.33 1.000
4y Tin, R 300.0 548.3 2.738
02 Tins R ng-O 1660 161.0
3 Toues JR 2868 4 a-.; 241.0 .
02 Toues 168.5 161. 168.6
dy 4P, PSIL 0.14 0.93 o.ob
0y ap, vst g.‘o"' g-g,?s g'g
02 Exit Qualit 3 . .
Q? BTU/Sec 7 0.94 .50 0.64
/A, A
: m«‘f:if',‘:c 0.135 o.52 0.133
" MAXIMUM
.. JIFTISEC — o.62
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GASEQUS OXYGEN HEAT EXCHANGER
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CORE_GEOMETRY. b 14.9" ~
=
%l
.
O, N 45-
'
GEOMETRY .
' B, PLATE 0, PLATE
Ko. Plates 20.0 19,0
Passage Dia., In 0.95 0.03
Flov Area, In? 1.92 2%
B/T Area, Fe2 a3
Core Waighe, Lbm 53.3
Tasulation CONDUCTIVITY
BTU/FT-HR-*R 0.3
PERFORMANCE
PUMPED IDLE TANK HEAD IDLE
832 W, Lbm/Sac
0 ¥, Log/sec gl 055
32 Tuns R 3000 5.483
2 tiﬂb § 68.5 ‘67-4
82 Toues R &;4.4 335.?_
02 Touz, R 199.4 496.2
H~ AP, PSI 0.20 1.12
{ P, PSI 2.23 3.7
02 Exit Quality Q.07! 1.0C
‘ Q; ETU/Sec 53.7 57.94
Q/A, Average
l’l'U/f:.zsoscc 1613 1,739
Qﬁt":ﬁ’ﬂ!‘!’.‘ 2¢7
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. i RL10 DERIVATIVE 112
g GASEOUS OXYGEN HEAT EXCHANGER
' S"ARE 3 CORE
DLAGRAM -'/Oz w
}_b- q0"—
']i o ..’1: )
7 r THERMAL SKIN
' A GEOMETRY BLOW-UP
T =X
. J ::.J - - .
.éeo o= - r.o's-
’ h ")
4 R Y i Y=Y
- e °2 PLATE ="} ‘LTJ B
(TURNED 90°)
( - o
GEOMETRY
E,PLATE 0, PLATE
Bo. Ylates 87.0 6.0
Passage Dia., In 0.03 0.03
Tlov Area, In? 5.765 4.49
B/T Area, Ft? 19.5
Core Weight, Lbm 19.3
RHANCE PUMPED IDLE TANX HFAD IDLE FULL THRUST
82 W, Lbm/Sec 0. 182 Oégg Ogg
W, Lbm/Ssc 2.84 Q. l.
o Tiar R 6390 559.0 431.5
02 Tyn. °r 199.4 6.2 205.5
i .z routl OR 300.0 4 %‘q 273'8
i 02 Toues °R 221.0 545.9 263.7
H- ‘P, PSI 0.5¢ .67 0.G;
’ C_ P, PSI 2.30 ?.gg 9,&‘35
Exit Quality | .00 . -
. g; BTU/Sec 2264 3.64 36.9
N A' A ' -
J °m/=1‘z’?152 1.4 o.184 .89
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FICURE ¢
RL10 DERIVATIVE IIB
GOX HEAT EXCHANGER GZOMETRY
WITH PUMPED IDLE PERFORMANCE
REVERSED HYDROGEN FLOW .
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RLIO DERIVATIVETLR '
. C GOX HEAT EXCHEAIGER
. ALTERNATE CONFIGURATIGN ’
i
’ Toz 191°R, GuaL: .0
Por 34.2 P54 .
CGE HYDROGEM
' The 37.9°R
;h= 149 °R ‘ My 0.018'%
e STAGE 2

STAGE | "Aﬁ -

Th=275 *R :
. / Phz 46.5 Ps1a :
/ Mn2 0.2 “"/;a Thz247°R_ 1

/ ! Phz 4¢.5 pua
¢ | e / . .

JSLET ; - QXYGEN |
Tos 167 Toz 199 'R# STAGE}. ) E‘\_& 4
Pos 843mm 0% o0 T a0 ¢
Mos 2.84Y42 [0 LTS . ' ox 231°R !
QuAL: 0.C68 © Pos 76.2 rsin {
Y4 ey M = 2-84 E'—'- '
____ Ha BYPASS bin? 082 e QuaL-i.0 3 '

Mh= 6.0 / * ;
* i

= GHR MPED IDOLE
Phz 471 run PUMPE
Mh= o.182 o fece.
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. FloviE |
RLIO DERIVATIVEIL3 ==
. GOX HEAT E/C!"'A"'G‘:"
ALTERNATE CONFIGURATIO! ‘
Toz 167.4°R ,QuaL2*0.043
: Por 19.48 psia
POGEN: HYDROGEN
. T s 37.9°R
Th‘ 232 L‘Q ‘ Mh= 0. oz‘slb—
e 2 STAGE 2 |

7 STAGE | — T 215 R s
//V Phs 3.4p3im

/ Mt 0.0625 Tas 34L°R

Phz .45 ps/a

[NLEY ) : QXYGE
Toz 167°R Toz 10G.0%00 | STAGE 3 = a1
510:323;1: Por 13.3p318 n Toz 514 °R
° Quwe? 0.3 ) / : :‘os 4. 7”;’.; :
/ N z s
 Hp BYPASS N 003 57| Gonus 10975

Mh= 0.043 7

HYDR0GEN_{NLET .
Th= 233"& : TANK Hemp 1DLE
. lG * -
ah; o.:'l:ss Bee '75/25 SPLIT H, Flow

0.043 L pYPAsSS FLow
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APPENDIX C
RLIO DERIVATIVETIB
GOX HEAT EXCHANGER
ALTERNATE CONFIGURATION
W, BYPASS Ma+0.065
TJoz I61°R,Gume: 0.089
Pox 14.98 P01
0GE?
;:- 8904 7% o
2 6.63pm8
he o.w: STAGE 2
—o- STAGE | y ;f Prona
2 .82 PsSIH
. / / Mhagmss &>

/

Tos I6'7 R
P.ot 20PSIA
Mo= 0334

Toz 156.3°R
Pez 19.3pPsiA
Quav: 0.3¢

HYDROGEN INLET
Thz 733°R
Phs 8.6 ps1m

STAGE 3

Vip?

HYDROGEN

Ths 3197
Mp= 0.02¢5%

nY
(

4}.= S5I6°R
Phz 6.86bsin

QXYGEN

ot EXIT

Toz S8B°R
Poz 18.2 psin
Mq: 0.33F léam
QuAL: 1.0

_TANK_HEAD |owe

Mhz 0.0795 B~fie. |
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3 Pratt & Whitney
FR-18046-3
: APPENDIX C
) TABLE 1
. RL10 DERIVATIVE IIB
‘ GOX HEAT EXCHANGER PERFORMANCE
‘ COMPARISON OF ORIGINAL COMPUTER
! PROGRAM WITH NEW HEAT EXCHAuER
y DECK (WITH PRINT GEOMETRY)
PUMPED TDLE TANK_HEAD IDL, FULL_THRUST
OXYGEN - QRIG. NEW ORIG. NEW ORIG. NEW
, Tix (OR) 167.3 167.0 166.2 166.0 167.0 167.0
. Tour (%) 209.8 212.9 528.2 544.6 263.4 263.4
. PN (PSIA) 8.3 8.3 "  20.0 20.0 §34.0 534.0
Pout (PSIA) 7.3 80.1 16.7 15.66 533.8 533.8
i aP (PS1) 71 4.22. 3.27 4.3 0.2 0.19
; - EXIT QUAL. 1.0 1.0 1.0 1.0 0.1 0.19
‘ HYDROGEN
, Tin (°R) 639.0 639.0 §59.0 559.0 431. 431.5 :
| Tour (°R) 228.8 223.4 404.4 394.1 214, 200.4 g
o }
! Pry (PSIA) 7.3 47.1 8.6 8.6 692. 692.0 ;
Pour (PSIA) 46.4 46.37 5.86 5.5  692. 692.0

- aP (PSI) 0.7 0.63 2.74 3.04 0.0 0.0 ; o

~ .

< A
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STAGE 1 |
W, (LBM/SEC)
M0, (Lbit/SEC)
™,IN (°R)
10,18 (°R)
™, 0uT (°R)
10,007 (°R)
M, (PSI)
Po, (PSI)
0, EXIT QUAL
Q (BTU/SEC)

SIAGE 2_

M, (LBM/SEC)
M0, (LBM/SEC)
THyIN (R)
T0,IN (°R)
TH,CUT (%)
T0,00T (°R)
PH, (PSI)
PO, (PSI)

0, EXIT QUAL
0 (BTU/SEC)

i |

Pratt & Whitney
FR-18046-3
APPENDIX C

Lagte 2

RLI0 DERIVATIVE I1B
GOX HEAT EXCHANGER PERFORMANCE

COMPARISON OF ORIGINAL AND NEW
HEAT EXCHANGER DECKS (WITH PRINT GEOMETRY)

PAMPED IDLE

TANK HEAD IDLE FULL THRUST
0.0182 0.0106 0.006
2.840 0.339 1.00
29.7  289.0 5400  547.8  261. 258.
7.3 8. 166.2 166. 167. o7, ,
#5.6 2773 4802 w9 236. 235. ‘
168.1 167.7 © 168. 167.3  168. 168.
0.1 0.11°  1.09 0.95 0.0 0.0
0.7 0.48 0.338  0.10 0.09 0.6
0.0 0.0 0.07 0.075 0.0 0.0 s
.o 0.87 2.4 2.50 0.55 0.54 g’

’

é
0.163¢ 0.0980 0.054 |
2.840 0.339 1.000 {

296.7  289.6  540.0  S47.8  260.9 - 257.6

168.1 67.7  168.0  167.3  188.2  168.3
2.6  27.4 1.4 W62 2T 1966 1
199.3 199.8 429.9 487.1 195.5 198.4 1
0.10 0.20 1.09 1.19 0.0 0.0 1

1.50 1.4 1.72 3.59 0.08 0.1
0.04 0.028  1.00 1.00 0.0 0.0 |
47.0 44.9 48.5 §7.3 10.9 12.5 ;
: !
|
‘
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TAGE 3

MH, {LBM/SEC)
MO, (Lbm/SEC)
THIN (°R)
TOHIN (°R)
TH,0UT (R)
TO,0UT (°R)
PHy (PSI)
PO, (PSI)
0, EXIT QUAL
Q (BTU/SEC)

-2-

TABLE 2 CONTINUED

PUMPED IDLL
ORIG.  NEM
0.182
2.84
639.0 639.0
199.3 199.8
296.7 289.6
209.8 212.9
0.4 0.4
4.2 2.3
1.00 1.00
228.1 233.5 -

TANK HEAD IOLE"

ORIG.

559.0
429.9
540.0
528.2
1.52
0.82
1.00
1.49

NEW

0.109

G.339
559.0
487.1
547.8
544.6

1.86
0.65
1.00
4.3

FULL THRUST
9.06
1.00
431.5 431.5
195.5 198.4
260.9 257.6
263.2 283.7
0.0 0.0
0.02 2.62
0.1 2.19
40.2 40.7



